

Focus tunable liquid lenses

And how to integrate them in machine vision systems

March 2020 Mark Ventura, Vice President Sales & Marketing

Bernstrasse 388 | CH-8953 Dietikon | Switzerland Phone +41 58 856 3011 | www.optotune.com | sales@optotune.com

Agenda

• Introduction

- How to combine ELs with off-the-shelf optics
 - Entocentric lenses
 - Telecentric lenses
 - Microscopy
- Custom designs
- Optics configuration tools
- Standard liquid lenses, drivers & software
- Application examples

Optotune on a page

shaping the future of optics

Established in 2008

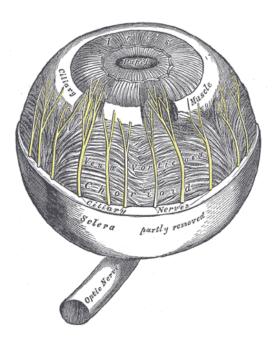
Leader in tunable optics

28 sales partners in 30 countries

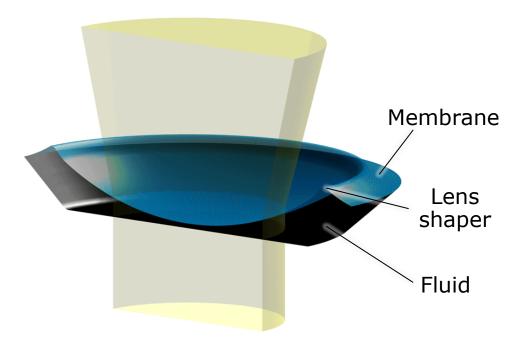
185 employees

- 118 in Switzerland
- 60 in Slovakia
- 7 in sales offices

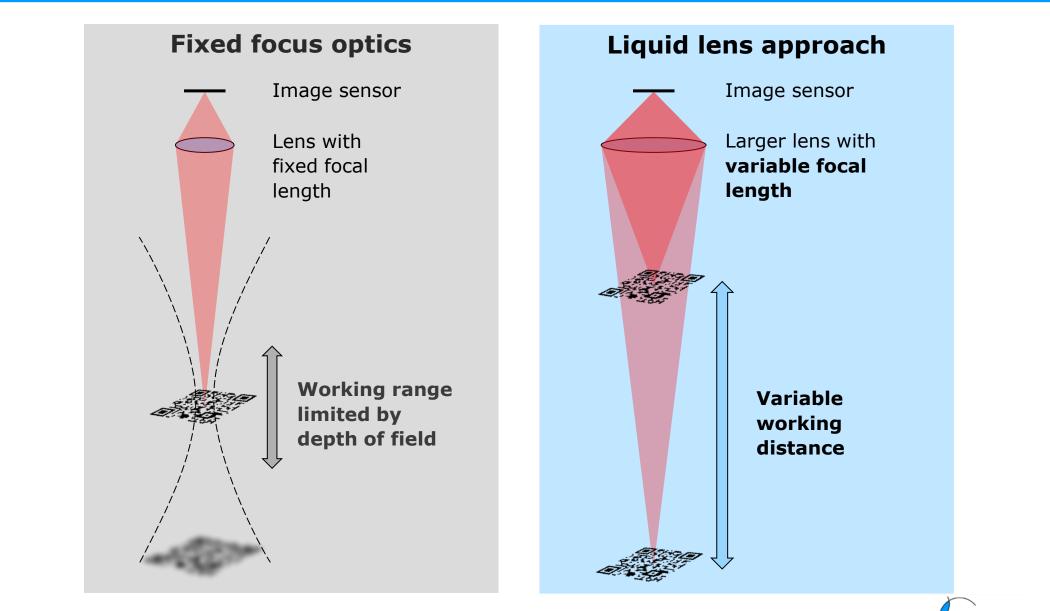
Privately owned



Working principle: membrane with fluid and actuator


Human eye:

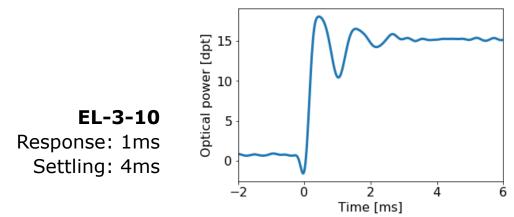
Ciliary muscle actuates the lens curvature



Optotune lens:

Electromagnetic actuator controls the lens curvature

The ideal focusing solution for machine vision



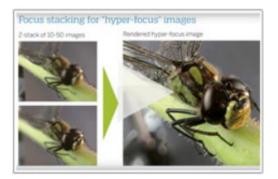
Specification	Your benefit
Apertures from 3 to 30mm	Sensor sizes from 1/3" to 40mm supported
Large working distance range	No need to increase F# for larger depth of field
Low dispersion (Abbe# V>100)	No color aberrations introduced
>10 ⁹ cycles	Long lifetime
High repeatability <0.1 dpt (automatic temperature compensation)	Once calibrated, the system runs open loop

Response times of few millisecods

Increase your throughput!

optotune

Demo videos



Demonstration at VISION Stuttgart 2018 https://youtu.be/PRQ5XjLPzfk

3	Four main co	mfigurations fo	r machine visi	
	Fait land sorth	The second s		Reading
	1-	-	ł	2
	Mountai or Moriton Norting chicks on Norting chicks on Norting chicks Norting chicks Norting	el + Sayon con actoriza- desiren reg + Materia conserva- Materia conserva- tione fo (Materi	• Normanial Statis April 100 • Machine Statis 100 M	• 1010-1010 • 1000-1010-0010 • 1000-1010-0010
	THE Part .	Res 1	-	-

Webinar June 2019

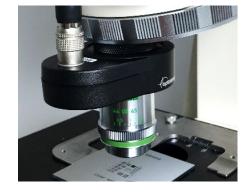
https://event.webcasts.com/viewer/event.jsp?ei=1244817&tp_key=d494d69939&sti=optowww

Focus stacking in real-time https://youtu.be/-NBXIMhBlug

- Introduction
- How to combine ELs with off-the-shelf optics
 - Entocentric lenses
 - Telecentric lenses
 - Microscopy
- Custom designs
- Optics configuration tools
- Standard liquid lenses, drivers & software
- Application examples

Four main configurations for machine vision applications

Conventional fixed focal length lenses	Telecentric lenses	Microscopes
--	--------------------	-------------

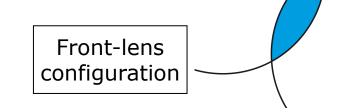

Front-lens config.

Back-lens config.

Working distances typically long (from 100mm to infinity) Working distances typically short (from 50mm to 500mm)

Magnifications: from 0.13X to 4X Up to 100x magnification

Four main configurations for machine vision applications

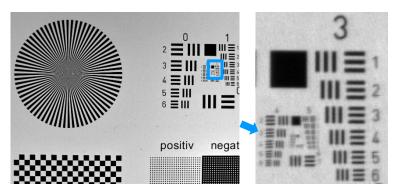

Conventional fixed	focal length lenses	Telecentric lenses	Microscopes
Front-lens config. Large WD	Back-lens config. Short WD	Constant magnification	High magnification
Package sorting	Contact lens inspection	Camera phone lens inspection	Particle counting in liquids
Robot vision	Electronics inspection	IC inspection	Microscopy

- Introduction
- How to combine ELs with off-the-shelf optics
 - Entocentric lenses
 - Telecentric lenses
 - Microscopy
- Custom designs
- Optics configuration tools
- Standard liquid lenses, drivers & software
- Application examples

Front-lens configuration typically for large working distances

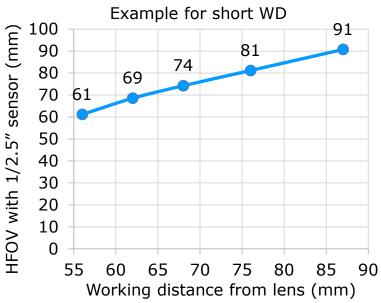
Working distance ranges from infinity to about 100mm

Large FOV for small sensors with 7.2mm S-mount lens & EL-16-40-TC


C-mount camera with up to 1/2.3" format sensor

Inside:

optotune EL-16-4


- S- to C-mount adapter AD04M
- Lensation B10M7224
 7.2mm S-mount lens
- 15mm C-mount spacers

EL-16-40-TC-VIS-5D-C

~160 lp/mm → Suitable for 2um pixel size!

53° HFOV with 1/2.5" sensor

Back-lens configuration with C-mount lenses for macro imaging

Back-lens configuration

C-mount camera

Optotune lens EL-10-30-Ci-VIS-LD-MV or EL-16-40-TC-VIS-5D-C

50mm lens e.g. Tamron 23FM50SP

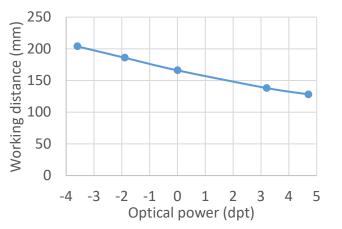
Results	EL-10-30	EL-16-40	Unit
50mm lens focus	∞	∞	mm
Magnification	0.4x	0.4x	
WD @0dpt	160	200*	mm
Z range	25	40*	mm
HFOV @0dpt on 1/2" sensor	18	20	mm

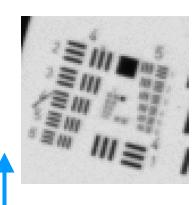
*280-420mm WD possible with Schneider Kreuznach Topaz 50mm & custom adapter

This only works for lenses with focal length >= 35mm

Optimized back lens configuration with Xenon Topaz 50mm lens

Back-lens configuration


C-mount camera with 1" sensor


5mm C-mount spacer

Optotune EL-16-40-TC-VIS-5D-C

C-mount adapter from Xenon Topaz 38mm*

Schneider Kreuznach Xenon Topaz 50mm

WD range: ~70mm

Optical power	WD from lens	HFOV on 1" sensor	PMAG	Resolution on Object		
-3.6 dpt	204mm	44mm	0.28X	17um		
-2 dpt	186mm	42mm	0.30X	16um		
0 dpt	166mm	40mm	0.31X	15um		
3 dpt	138mm	36mm	0.34X	14um		
4.7 dpt	128mm	35mm	0.35X	14um		
Optical leverage: 7-10mm/dpt						

*The C-mount adapter of the Xenon Topaz 38mm lens is about 5mm shorter than the adapter of the 50mm lens. Hence the back flange distance of the 50mm lens is reduced, bringing it closer to the tunable lens and camera, which results in higher optical leverage of this configuration that with standard 50mm C-mount lenses

🖁 optotune 🗉

IMT precision on glass

Reflection Cr seen on the laye

Deflection Cr see

www.imtag

111 E

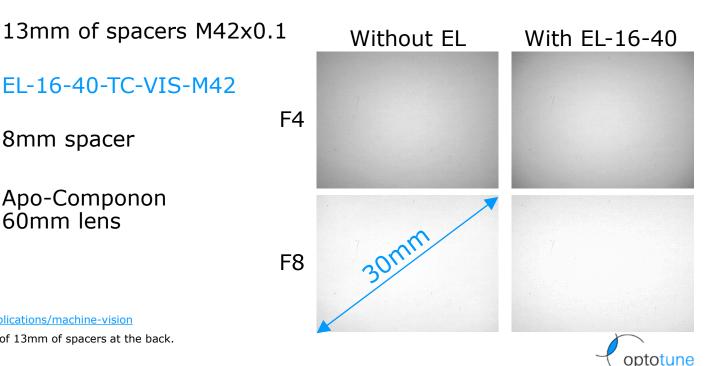
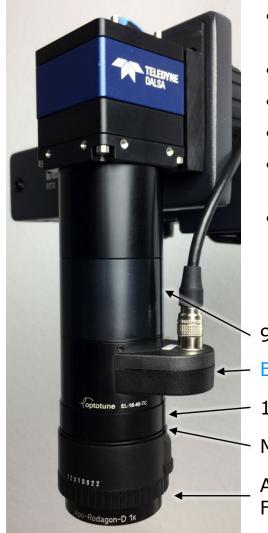
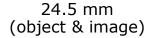
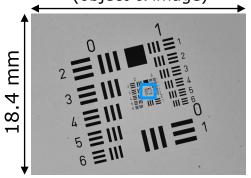

Coating MT

Image circles of 30mm possible


- WD range: from 1100mm to 380mm @ -2Dpt to 3Dpt
- Distortion unchanged
- Resolution equally good
- No added vignetting

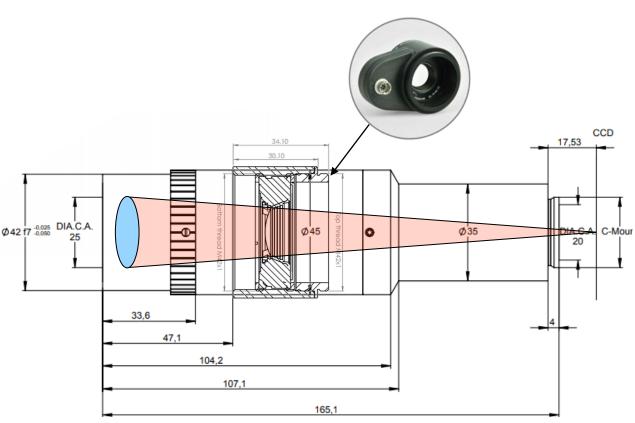

Test report available online: http://www.optotune.com/applications/machine-vision Note: Infinite focus is possible by using only 8mm instead of 13mm of spacers at the back.


Low distortion 1x solution for large sensors

- Large z-range of 57mm achieved with +/-2 dpt
 - Optical leverage is ~14mm per diopter
- Magnification changes slightly with 0.5% per mm of WD change
- Slight vignetting at F4, no vignetting at F5.6 or higher
- No distortion measurable at 0 dpt and 1 dpt
- Nominal resolution of ~64lp/mm is maintained after adding EL-16-40 when optical axis is vertical
- In Horizontal optical axis a resolution of ~57lp/mm can be achieved by stopping the lens down to F11

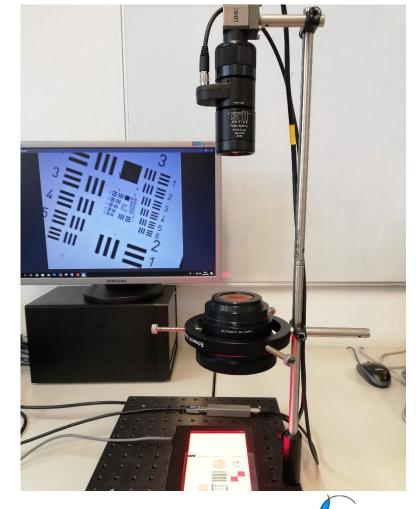
95mm of M42 spacers
EL-16-40-TC-VIS-5D-M42
11m long M42 spacer
439 to M42 adapter

Apo Rodagon D1x 75mm F/4 lens*


USAF element:	6/1
Line width (um):	7.81
Lp/mm (object):	64
Magnification:	1.00
Lp/mm (image):	64
Nyquist limit:	83
Pixel size (um):	6
\sim	

Test report available online: <u>http://www.optotune.com/applications/machine-vision</u>

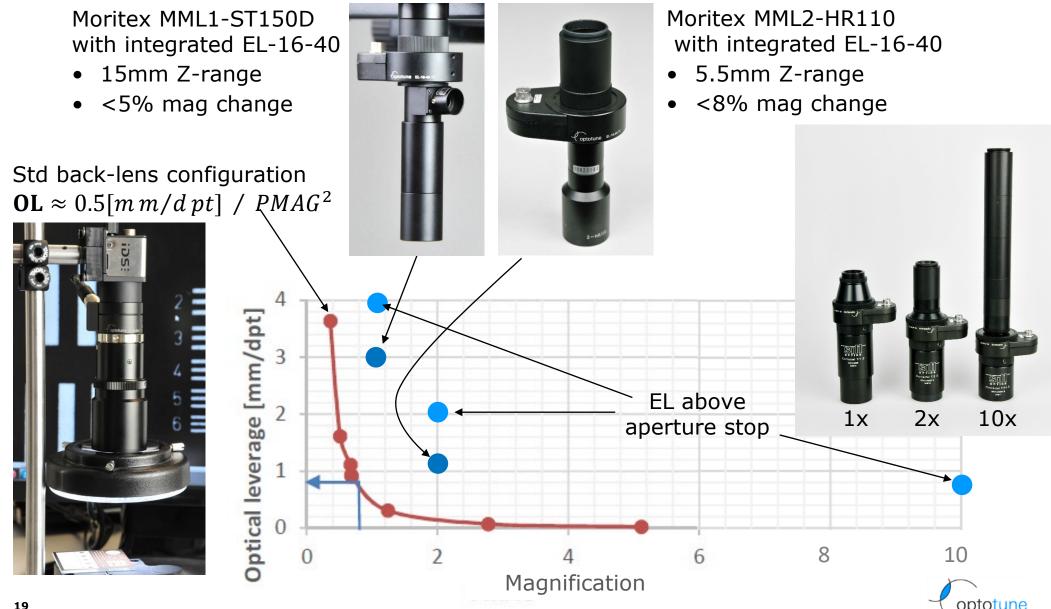
* by Linos (formerly Rodenstock)

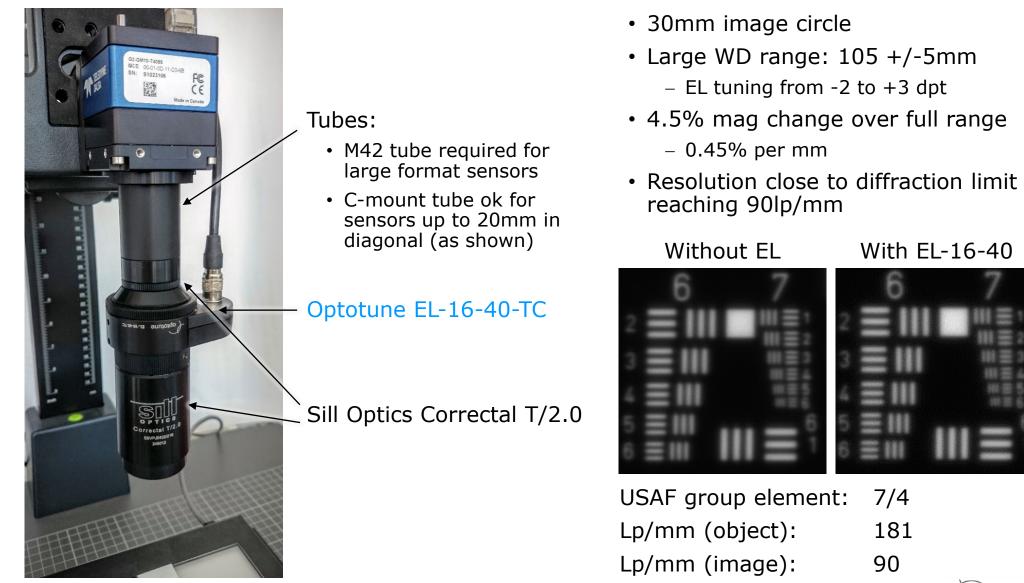

Focal lengths of 150mm or 300mm with EL-16-40 are ideal for imaging via galvos in laser pocessing

Example: EL-16-40-TC-VIS-5D-M42 integrated behind aperture of Sill Optics S5LPJ9034 150mm lens

Drawing: http://www.silloptics.de/fileadmin/user_upload/Downloads/Outline/S5LPJ9034.PDF

Example: EL-16-40-TC-VIS-5D-M42 integrated in Sill Optics S5LPJ0303 300mm lens


optotune


- Introduction
- How to combine ELs with off-the-shelf optics
 - Entocentric lenses
 - Telecentric lenses
 - Microscopy
- Custom designs
- Optics configuration tools
- Standard liquid lenses, drivers & software
- Application examples

Telecentric lenses preferably integrate the EL to achieve large Z-ranges

Optimized 2X telecentric lens for large formats

Test report: http://www.optotune.com/images/products/Optotune%20EL-16-40-TC%20with%20Sill%20Correctal%20T_2.0%20telecentric%20lens.pdf

Sill Optics offers variable focus telecentric lenses from 0.13X to 3.0X

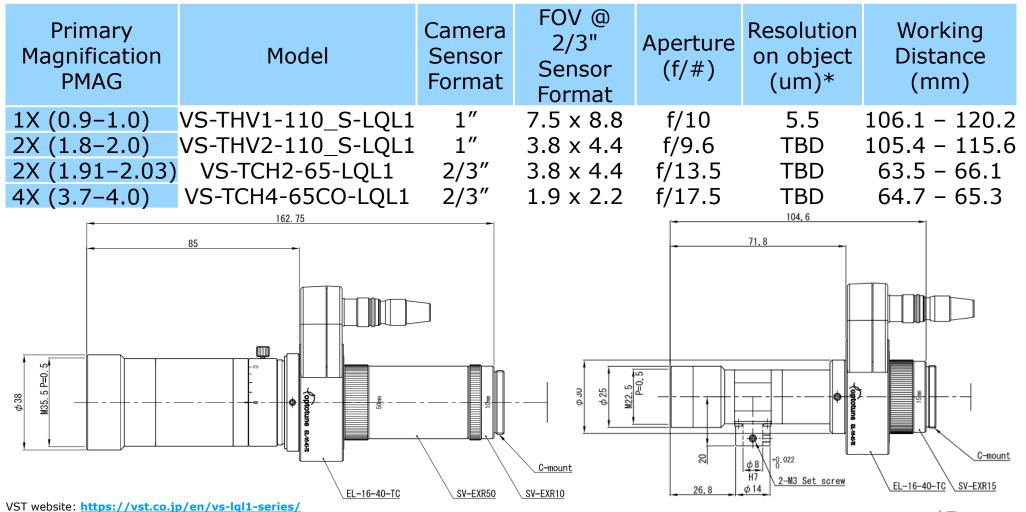
part number	magnification	working distance [mm]	dear aperture [mm]	max. sensor size [mm]	wave- length [nm]	NA	max. distortion [%]	length [mm]	mount
S5VPJ1860	0.133	79.7 – 434.1	153	16.0 (1")	450 - 680	0.01	0.35	587.0	C-mount
S5VPJ5060	0.192	215.3 - 366.6	83	11.0 (2/3")	450 - 680	0.01	0.7	357.6	C-mount
S5VPJ1565	0.193	193.6 - 338.7	123	16.0 (1")	450 - 680	0.01	0.5	396.3	C-mount
S5VPJ6060 *	0.289	137.4 - 205.8	86	16.0 (1")	450 - 680	0.02	0.5	283.4	C-mount
S5VPJ1260	0.311	155.1 – 211.2	62	16.0 (1")	450 - 680	0.02	0.45	241.2	C-mount
S5VPJ3060	0.343	133.1 – 184.4	58	8.9 (1/1.8")	450 - 680	0.02	0.4	224.9	C-mount
S5VPJ2660 *	0.374	133.4 – 172.8	48	11.0 (2/3")	450 - 680	0.02	0.65	203.5	C-mount
S5VPJ2060	0.499	102.8 - 125.5	29	8.0 (1/2")	450 - 680	0.02	0.3	162.7	C-mount
S5VPJ2898 *	0.578	81.8 - 98.2	60	16.0 (1")	450 - 680	0.03	0.5	161.7	C-mount
S5VPJ1560	0.659	79.2 - 91.6	28	8.0 (1/2")	450 - 680	0.03	0.36	133.9	C-mount
S5VPJ0625 *	1.000	179.1 – 196.5	29	16.0 (1")	450 - 680	0.03	0.8	142.5	C-mount
S5VPJ0627	1.500	152.4 - 172.3	29	21.4 (1.25")	450 - 680	0.04	0.45	179.2	C-mount
S5VPJ0422 *	2.000	100.5 - 109.8	26	32.0	450 - 680	0.04	0.6	133.4	M42x1
S5VPJ0422/216	2.000	100.5 - 109.8	26	16.0 (1")	450 - 680	0.04	0.6	156.0	C-mount
S5VPJ0426	2.500	94.8 - 104.6	26	35.0	450 - 680	0.05	0.4	160.2	M42x1
S5VPJ0420	3.000	91.2 - 101.2	26	35.0	450 - 680	0.06	0.2	186.1	M42x1

* Lenses also supported by Coaxial illumination

Edmund Optics offers variable focus telecentric lenses from 0.15X to 0.75X

MercuryTL[™] Liquid Lens Telecentric Lenses

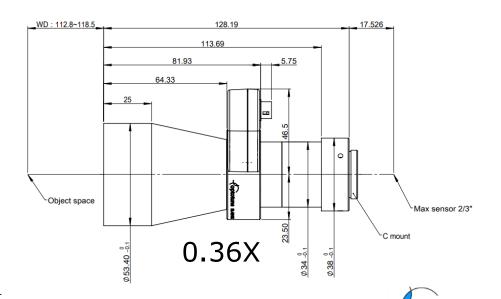
- EL-10-30-Ci-VIS-LD-MV integrated behind aperture stop
- Demo video: <u>https://youtu.be/36qwzmfCriM</u>



VST offers variable focus telecentric lenses from 1x to 4x

• EL-16-40-TC-VIS-5D-C integrated behind aperture stop

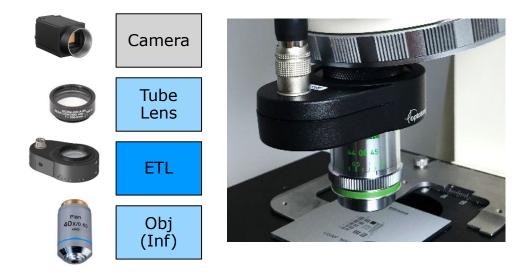
optotune


* Resolution is measured using **red**light with USAF target at a contrast of about 30% contrast

Linkhou offers variable focus bi-telecentric lenses from 0.36x to 2.0x

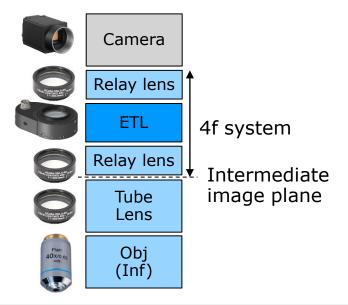
• EL-16-40-TC-VIS-5D-C integrated in front of aperture stop

Primary Magnification PMAG	Model	Camera Sensor Format	FOV @ max Sensor Format	Aperture (f/#)	Resolution on object (um)*	Working Distance (mm)
0.36X	TCPLP23-036-115	2/3″	23.5 x 19.6	f/4.5	8.7	115 +/- 15
0.6X	TCPLP23-06-115	2/3″	14.1 x 11.8	f/4.5	6.9	115 +/- 10
1.0X	TCPLP23-1.0-110	2/3″	8.5 x 7.1	f/10	5.9	106 - 116
2.0X	TCPLP23-2.0-110	2/3″	4.2 x 3.5	f/16	5.0	108 - 112


- Introduction
- How to combine ELs with off-the-shelf optics
 - Entocentric lenses
 - Telecentric lenses
 - Microscopy
- Custom designs
- Optics configuration tools
- Standard liquid lenses, drivers & software
- Application examples

Integration of liquid lenses in microscopes

Non-telecentric


- Tunable lens right above objective lens (infinity corrected space)
- Largest Z-range, but with mag change

	Z-range (typical)	Mag change
10x	2560 μm (20D: 10240 μm)	7.5 %
20x	640 μm (20D: 2560 μm)	12.2%
40x	160 μm (20D: 640 μm)	23.7%

Telecentric

- Tunable lens at intermediary pupil position of a relay
- Smaller Z-range, but no mag change

	Z-range (typical)			
10x	500 μm (20D: 2000 μm)			
20x	125 μm (20D: 1000 μm)			
40x	30 μm (20D: 120 μm)			

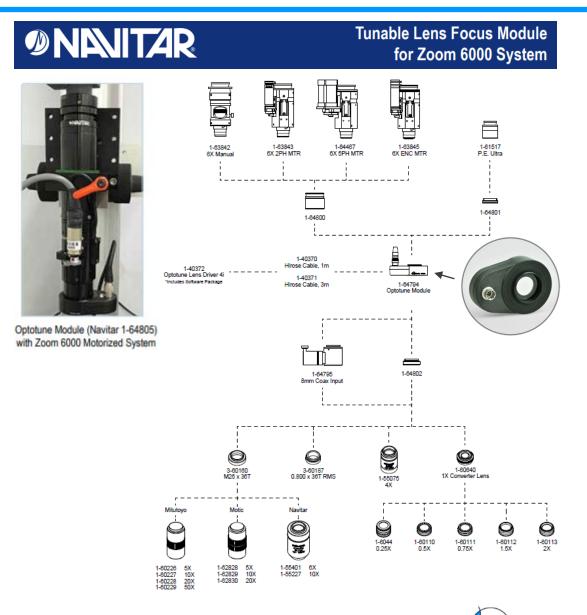
Microscope system for 10-100X incl. EL-16-40

- Non-telecentric setup for microscopy
- Sensor: Up to 1.1"
- Tube lens: 1x/0.8x/0.6x
- Tunable lens: EL-16-40-TC-VIS-5D-1-C* *Additional adapters required for tube lens and objective
- Objective lens: 10X to 100X

• Performance (with 1X Tube lens)

Objective lens			10X	20X	40X	100X
NA			0.25	0.50	0.65	0.95
Tuning Z-range*	' [mm]		2.80	0.51	0.13	0.020
FOV	[mm]	1" Sensor	1.28 x 0.96	0.64 x 0.48	0.32 x 0.24	0.128 x 0.960
		1/2.3" Sensor	0.62 x 0.46	0.31 x 0.24	0.16 x 0.12	0.062 x 0.046

* Black : Measured Value; Blue : Estimated value.



Navitar industrial microscope with EL-16-40-TC autofocus module

- Modular system for zoom applications
 - Zoom is parfocal as the EL is placed below the zoom
- Also suitable for fixed mags
- Compatible with several microscope lenses up to 50X
- System diagram & detailed spec sheet available on Navitar website:

https://navitar.com/products/imaging-optics/optotunemodule/optotune-zoom-6000-system-components/

Optem Fusion industrial microscope with EL-16-40-TC autofocus module

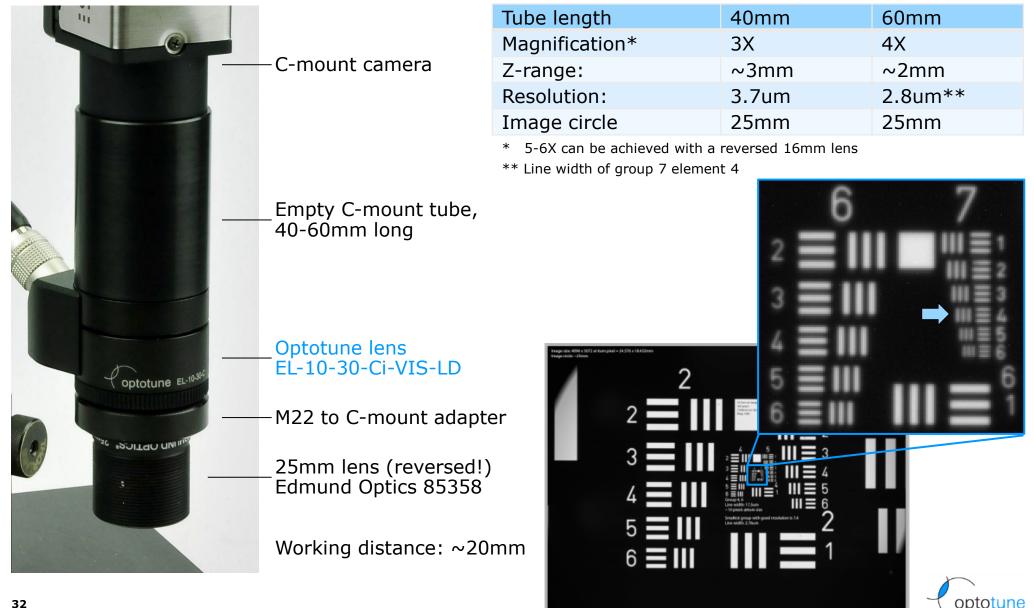
- Modular system for zoom or fixed mag applications
- Zoom is parfocal as the EL is placed below the zoom

http://www.qioptiq.com/optem-fusion-lens, Optem® is a registered trademark of Qioptiq, Inc

Mvotem industrial microscope with EL-16-40-TC autofocus module

- The zoom is parfocal as the EL is placed below the zoom
- Lens driver fully integrated into system software

- Video: <u>https://youtu.be/ZZFe3hg9JwM</u>
- Website: www.mvotemoptics.com/automatic-zoom-lens.html


Edmund optics dynamic focus VZM with the EL-10-30-Ci-VIS-LD-MV integrated

- Very large focus range as EL is placed close to aperture stop
- The zoom is NOT parfocal, however, as the EL is placed above the zoom

Magnification setting	0.75X	1X	2X	3X	4X	4.5X
Magnification range	0.65X - 1.15X	0.9X - 1.2X	1.5X - 2.0X	2.4X - 3.0X	3.2X - 4.0X	3.7X - 4.6X
Working distance (mm)	20 - 101	20 - 100	54 - 90	75 - 90	82 - 90	84 - 90
Horiz. FOV (1/2" sensor)	9.8 - 5.6	7.1 - 5.3	4.3 - 3.2	2.7 - 2.1	2.0 - 1.6	1.7 - 1.4

Low cost AF microscope with fixed mag

Compact variable focus 2X and 5X lenses offered by Edmund Optics

• EL-10-30-Ci-VIS-LD-MV integrated

TECHSPEC® TUNABLE COMPACT OBJECTIVE LIQUID LENS ASSEMBLIES						
Magnification:	2X	5X	Image			
Numerical Aperture NA:	0.12	0.15	#34-712			
Working Distance (mm):	31.3	16.2	HIJT / IZ			
Focus Tunable Range (typical) (mm):	±2	±0.5				
Maximum Sensor Size:	2⁄3"	2⁄3"				
Field of View, ¾" Sensor (mm):	4.4 x 3.3	1.8 x 1.32				
Field of View, ½" Sensor (mm):	3.2 x 2.4	1.28 x 0.96				
Mount:	C-Mount	C-Mount				
Liquid Lens Type:	10mm, VIS Coated, -1.5 - 3.5 diopter range	10mm, VIS Coated, -1.5 - 3.5 diopter range				
Stock No.	#34-712	#34-713				
1-5	\$950.00	\$1,050.00				
6-10	\$875.00	\$975.00	#34-713			
+11	Call for OEM G					

- Introduction
- How to combine ELs with off-the-shelf optics
 - Entocentric lenses
 - Telecentric lenses
 - Microscopy
- Custom designs
- Optics configuration tools
- Standard liquid lenses, drivers & software
- Application examples

Rapidly increasing number of custom designs allow for optimized performance

High resolution and large field of view (FOV) at the same time

> Ideal for code reading and OCR applications, e.g. in logistics

Working distance (WD) range from 250mm to infinity

- Best MTFs in the range of 500 to 1000mm
- High optical leverage (1.13 m/dpt)

Resolution for 2.4um pixels (e.g. Sony IMX253/304 1.1" or IMX183 1")

- Image center at Nyquist limit (up to 208 lp/mm)
- Image corners between 90-168 lp/mm
- ➢Best resolution at F/5.6

Image quality

- \succ No vignetting up to 1.1" format
- > Significant barrel distortion, which can be corrected digitally

ELM-12-2.8-18-C

25 mm lens with integrated EL-16-40 by Evetar

High resolution and medium field of view (FOV)

> Ideal for code reading (e.g. box packing), iris recognition

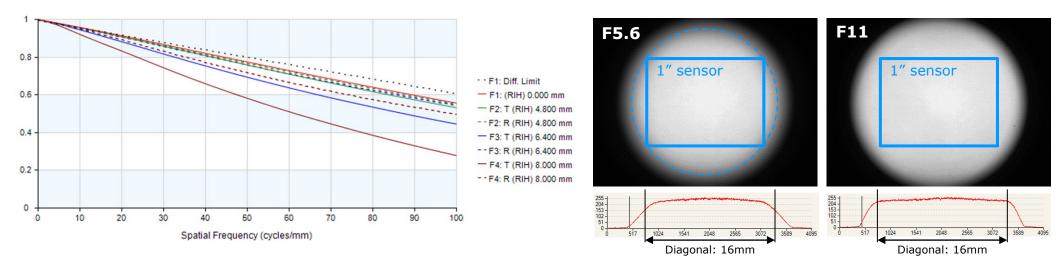
Working distance (WD) range from 250mm to infinity

- ➢Ideal optical leverage of 0.61m/dpt
- Resolution for 2.4um pixels (e.g. IMX183 1" or IMX304 1.1")
 - In the center over the WD range: at 169-180 lp/mm (close to Nyquist limit)
 - >At the corners for WD 250mm-1000mm still 157-174 lp/mm

Image quality

- ≻No vignetting up to 1.1" format
- ➤Very low distortion
- Great polychromatic (white light) performance although better contrast was achieved with monochromatic (red) light

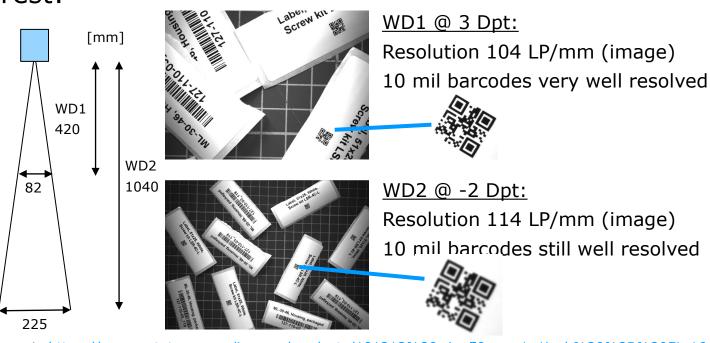
ELM-25-2.8-18-C



35mm lens for 1" sensors by Kowa

Optimized optical design provides top performance

- 1" camera sensors
- F5.6 to F32 (lower F# achievable with EL-16-40-TC)
- WD range: 250 500mm (250 infinity achievable with EL-16-40-TC)
- MTF50 @ 80 120lp/mm
- No orientation dependence

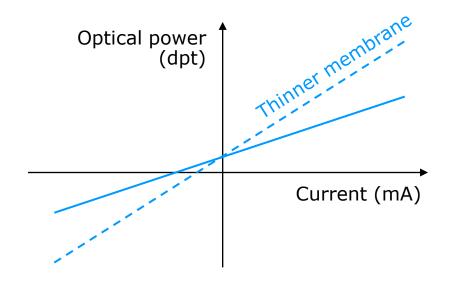


Spec sheet: <u>www.optotune.com/images/products/Optotune-Kowa 35mm lens S10-469 spec sheet.pdf</u> Test report: <u>www.optotune.com/images/products/Optotune 35mm imaging lens for 1inch sensors.pdf</u>

50mm lens for 1.1" sensors by C4C

- Optimal performance due to integration of the EL-16-40 lens close to the aperture stop
- Main specs:
 - Working distances: 285mm to infinity
 - Resolution: 140lp/mm (also with optical axis horizontal)
 - F-number: F/2.8 with some vignetting, F/4 without vignetting
- Test:

Test report: https://www.optotune.com/images/products/181213%20c4c_50mm_1plinch%20%2B%20EL-16-40.pdf



- Introduction
- How to combine ELs with off-the-shelf optics
 - Entocentric lenses
 - Telecentric lenses
 - Microscopy
- Custom designs
- Optics configuration tools
- Standard liquid lenses, drivers & software
- Application examples

Optical power (dpt) is linear with current

• Vertical offset depends on liquid fill level

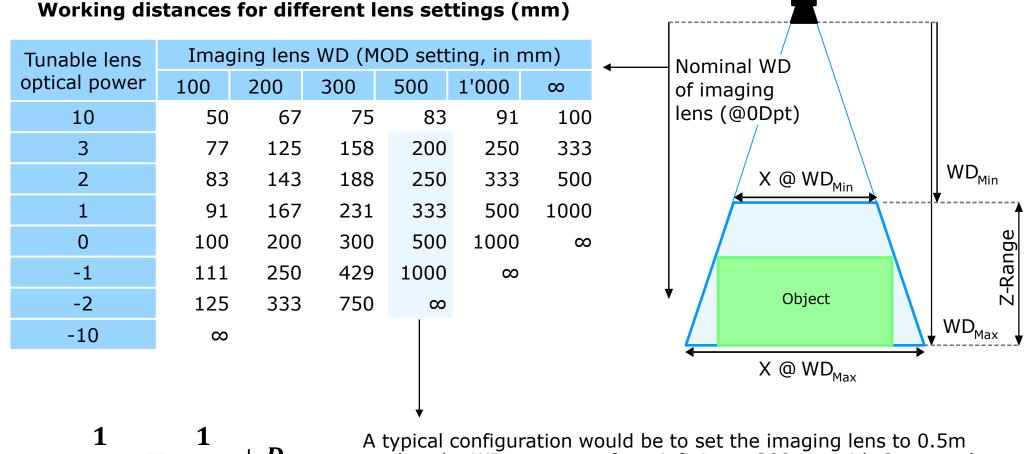
 Inclination depends on membrane stiffness Optical power can be added arithmetically

Thin lens equation:

$$\frac{1}{f_{res}} = \frac{1}{f_1} + \frac{1}{f_2}$$

$$D_{res} = D_1 + D_2$$

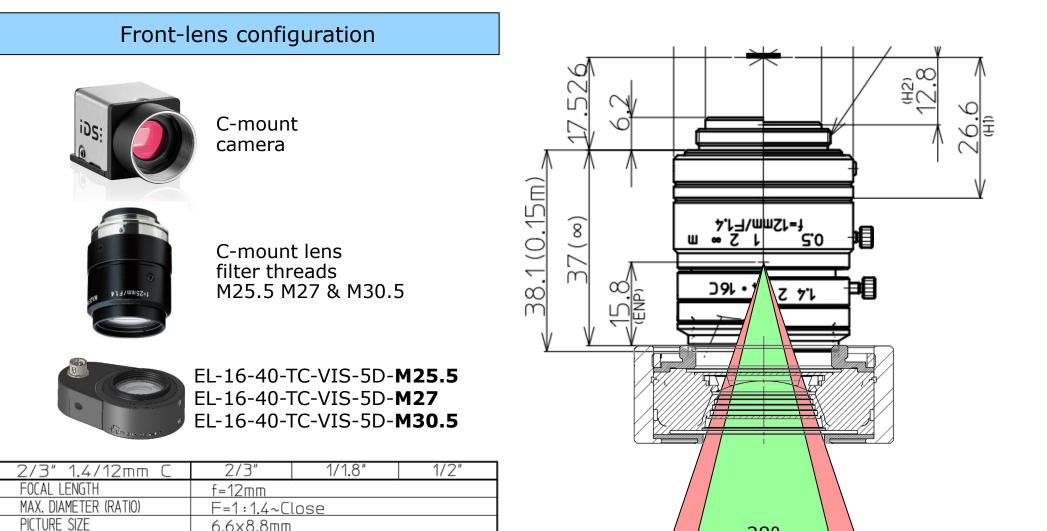
Simple math in front lens configuration:


$$\frac{1}{WD_{res}} = \frac{1}{WD_0} + D_{EL}$$

Examples:

- WD₀ = infinity, D_{EL}=5 \rightarrow WD_{res} = 1/5m
- $WD_0 = 0.5m$, $D_{EL}=-2 \rightarrow WD_{res} = infinity$
- $WD_0 = 0.5m$, $D_{EL}=3 \rightarrow WD_{res} = 1/5m$

How to calculate working distance in front lens configuration



 $\frac{1}{WD_{res}} = \frac{1}{WD_0} + D_{EL}$

A typical configuration would be to set the imaging lens to 0.5m so that the WD can range from infinity to 200mm with Optotune's EL-16-40 going from -2 to +3 diopters, respectively

The EL in front leads to vignetting at HFOV>28°

optotune

28°

38°

ANGLE

6.6x8.8mm

24.0

31.7

39.4

21.4

28.30

35.0

29.1

(38.3)

46.8

VER. ANGLE

HOR. ANGLE

DIA. ANGLE

Configuration table for entocentric lenses

\setminus

Camera Mount Imaging lens focal lengt							ngth (mm)				
sensor	Mount	<6	6	8	12	16	25	35	50	75	100	>100
1 / / //			30° HFOV	23°	15°	11°	7°	5°	4°	2.5°	2°	
1/4″	С											
1 / 7 //	S		44°	33° *	23°	17°	11°	8°	6°	4°	3°	
1/3″	С								- or back nfiguratio			
1 / 7 //	S		56° *	44°	30°	23° *	15°	10°	7°	5°	4°	
1/2″	С											
2/3″	С		73°	58°	40°	31°	20°	14°	10°	7°	5°	
2/3												
1″	с		74°	77°	56°	44°	29°	21°	15°	10°	7°	
					*	**	*	*	*			
30mm	M42		128°	114°	91°	75°	52°	39°	28°	19°	14°	
diag.	11142											
		F	ront lens o	configura	ation onl	у		Back	lens con	figuratio	n only	
Not po	Not possible Possible with custom Vignetting with off-the-shelf lenses Off-the-shelf lenses Custom design available										gn	

** Customized lens in development

optotune

Online lens configurator for entocentric lenses

http://configurator.optotune.com

Optotune Lens Configurator	optotune
REQUIREMENTS Please enter details about the objects you want to inspect. Maximum object size 350 mm x 250 mm Required working distance range 1000 mm to 3000 mm OPTICAL CONFIGURATION Camera sensor size Optotune Lens 1/2" - 6.4mm width * EL-16-40-TC-5D * Camera Lens 16mm: Tamron 23FM16SP * Lens Configuration Frontlens Backlens Spacer Millimeters 0 Copyright © 2016, Optotune Switzerland AG	1,000 900 900 900 900 900 900 900

*c*optotune

Lens selector tool to get specific part numbers

√ optotui v17.05.2019

http://www.optotune.com/Optotune lens selector.xlsx

Optotune	lens selec	tor for <i>end</i>	locentric	lenses
----------	------------	--------------------	-----------	--------

1) Enter your preferred average (nominal) working distance: 1000 mm

2) Enter the (horizontal) width of your object:

--> resulting horizontal field of view:

3) Find an appropriate HFOV in the table and click to see a list of recommended lens configurations

Senso	r format &	Imaging lens focal length (mm)											
Ca	amera	<6	6	8	12	16	25	35	50	75	100	>100	
1/4"	S-mount		30° HFOV	23°	15°	11°	7°	5°	4°	2.5°	2°		
1/4	C-mount												
1/3"	S-mount		44°	33°	23°	17°	11°	8°	6°	4°	3°		
1/5	C-mount												
1/2"	S-mount		56°	44°	30°	23°	15°	10°	7°	5°	4°		
1/2	C-mount												
2/3″	C-mount		73°	58°	40°	31°	20°	14°	10°	7°	5°		
2/3	C mount												
1″	C-mount		74°	77°	56°	44°	29°	21°	15°	10°	7°		
1	C-mount				*		*						
30mm	M42-mount		128°	114°	91°	75°	52°	39°	28°	19°	14°		
diag.	WH42-IIIUUIIL												
			Front lens	tion only			Back	lens con	figuratio	n only			
Not p	Not possible Possible with custom optics design Vignetting with off-the-shelf lenses Possible with OTS lenses												

250 mm

14 ° HFOV

- 1) Enter FOV and WD
- 2) Angular FOV is calculated
- 3) Click on a field in the matrix
- 4) Recommended imaging lenses and the matching Optotune product are listed

Note: Only for entocentric lenses

1" sensors & 35mm focal length

Back to overvi	ew																
			Optotune		Typical W	/D range	(mm) `										
Brand	Model (incl. weblink)	Focal length	Mount	Format	Filter thread	List price range	Model	List price range	Position	Spacers behind EL for infinite WD	Nominal VD (w/ ETL 0 dpt)	WD max	WD min	Vignetting	Smallest recommended pixel size (um)		Comments
Kowa	LM35HC-OPT	35	C-mount	1"	None	200-500\$	EL-16-40-TC-VIS-5D-C	500-1000\$	Back	NA	1'000	inf	200	No	3.5	Yes	Integrated design, very compact, great performance
Schneider	Xenon Topaz 30	30	C-mount	1.1"	M30.5x0.5	500-1000\$	EL-16-40-TC-VIS-5D-M30.5	500-1000\$	Front	NA	1'000	inf	200	Alittle	3.0	Yes	Hardly any vignetting on 1", a bit on 1.1"
Schneider	Xenon Topaz 30	30	C-mount	1.1"	M30.5x0.5	500-1000\$	EL-16-40-TC-VIS-5D-M30.5	500-1000\$	Front	NA	1'000	inf	200	Alittle	3.0	Yes	Hardly any vignetting on 1", a bit on 1.1"
Schneider	Xenon Topaz 38	38	C-mount	1.1"	M30.5x0.5	500-1000\$	EL-16-40-TC-VIS-5D-M30.5	500-1000\$	Front	NA	1'000	inf	200	No	3.0		Great performance up to 1.1"
Schneider	Xenon Topaz 38	38	C-mount	1.1"	M30.5x0.5	500-1000\$	EL-16-40-TC-VIS-5D-C	500-1000\$	Back	NA		88	67	No	3.0		
Optart	KMK3520-10M	35	C-mount	4/3"	M40.5xP0.5	On Request	EL-16-40-TC-VIS-5D-C	500-1000\$	Back	NA		88	67	No	4.0		Works well as macro up to 1.1"
Optart	VMK3514-C	35	C-mount	1"	M46XP0.75	On Request	EL-16-40-TC-VIS-5D-C	500-1000\$	Back	NA		88	67	No	5.0		

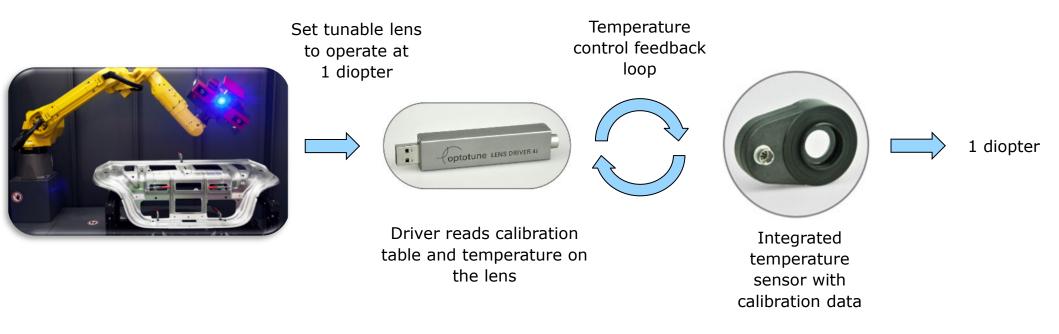
- Introduction
- How to combine ELs with off-the-shelf optics
 - Entocentric lenses
 - Telecentric lenses
 - Microscopy
- Custom designs
- Optics configuration tools
- Standard liquid lenses, drivers & software
- Application examples

Optotune's liquid lenses for machine vision

	EL-10-30-TC	EL-10-30-C(i)	EL-16-40-TC
	esuorou Deservice Coptotume		Visions Awards Bold B
Focal power range	8 22 Dpt	-1.5 +3.5 Dpt +5 +10 Dpt	-2 +3 Dpt -10 +10 Dpt
Clear aperture	10mm	10mm	16mm
Outer diameter	30mm	30mm	40mm
Response time*	4 / 9 / 20 ms	2.5 / 6 / 15ms	5 / 12 / 25ms
Wavefront quality RMS @525nm**	<0.25 / 0.5 λ	<0.15 / 0.25 λ	<0.25 / 0.5 λ <0.25 / 1.5 λ
Absolute focal power accuracy (typical)	< 0.1 dpt	< 0.1 dpt	< 0.05 dpt
Typical use case	Microscopy	Small & mid size sensors	Large sensors

* 10-90% of step / settling time of a controlled step / settling time of rectangular step 49

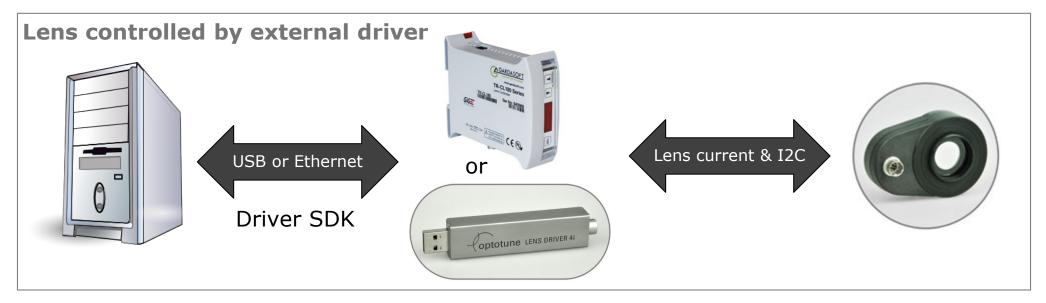
** vertical / horizontal optical axis


optotune

Three drivers available off-the-shelf

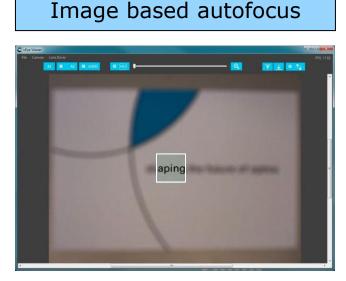
Applications	R&D, portable systems	Industrial 24/7 operation	OEM
Current range	-290 to + 290 mA	-400 to +400 mA	-250 to +250 mA
Interfaces	USB	GigE, RS232, Analog 0-10 V	I2C, UART, Analog 0-10 V
SDKs	C#, LabVIEW	Triniti SDK, C#, C++, VB	C#, C++, VB
Supply voltage	5 V	24 V	3.3 or 5 V

Stable focus control with temperature feedback



Liquid lens stability

- Temperature drift of 0.02 0.06 diopters / °C (depending on lens model) is compensated by the driver
- Typical accuracy \pm 0.1 diopter, which is usually within depth of field


Lens control by camera removes the need for external drivers

How to find the right focus

- Multiple images are acquired to find the best focus by algorithm
- Typically 10-15 frames required
 - ightarrow 0.5 to 1 sec focus time

Product Focus A 2 dpt B 1 dpt C 3 dpt A B B C B C B C

Preset lookup tables

 Focus positions are stored in a lookup table during calibration (teaching)

Inflexible, as reliable as the

focal power mode (~0.1dpt)

- Only one focus step required
 - \rightarrow 15ms focus time

Using a distance sensor Distance Focus 100mm 1 dpt 200mm 2 dpt 300mm 3 dpt

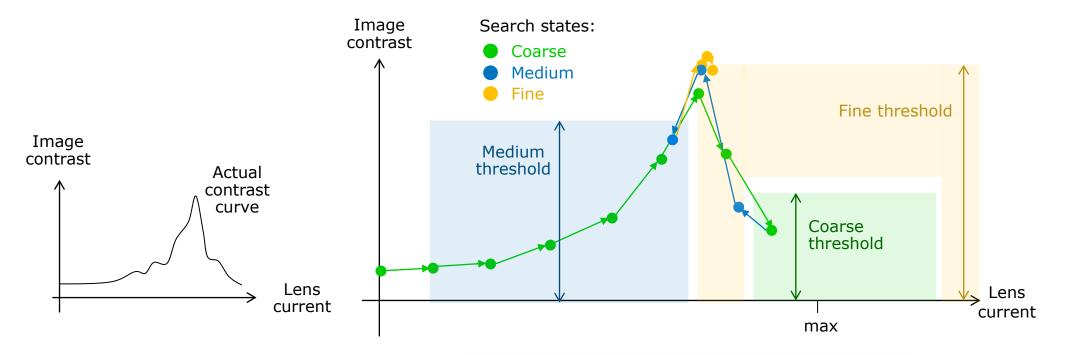
С

optotune

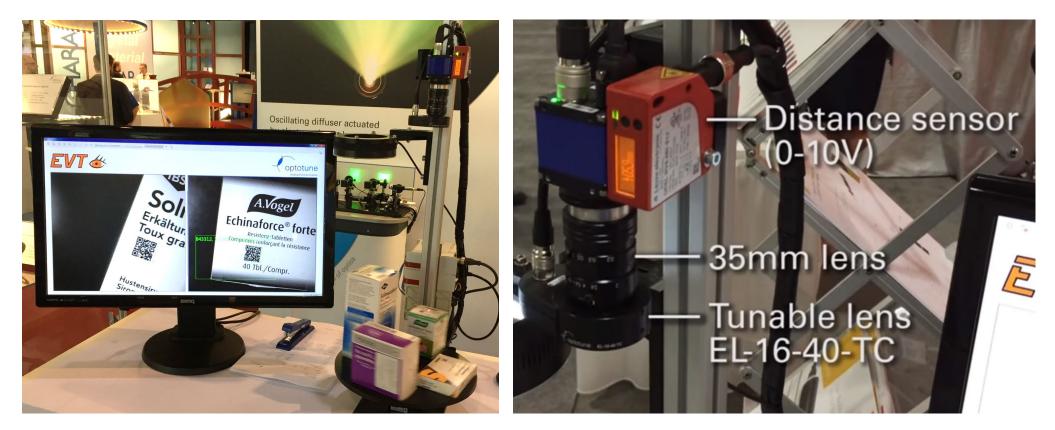
 Multiple distance vs focal power points are saved during calibration

B

 Only one focus step required
 → 15ms focus time


Α

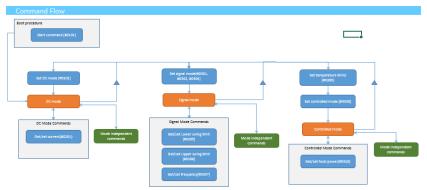
Optotune's autofocus algorithm



Parameters can be set in Lens Driver Controller:

	AutoFoc	usOptions	- • ×
Minium Focus Current	0.00 [mA]		
Maximum Focus Current	292.00 [mA]		
Coarse Step Size:	40.05 [mA]	Coarse Threshold:	0.950 [0-1.0]
Mid Step Size:	11.94 [mA]	Mid Threshold:	0.970 [0-1.0]
Fine Step Size:	2.43 [mA]	Fine Threshold:	0.990 [0-1.0]
Auto Switch to Focal Power:	Enabled		

- Distance sensor signal is mapped to optical power
- Stand-alone system using Gardasoft TR-CL180 lens controller
- Each package is in focus within 20ms
 - \rightarrow at 5m/s packages can be placed with 100mm gaps


Videos available online: <u>https://youtu.be/83mTQu9dPc8</u> and <u>https://youtu.be/h5BUsn4UTNU</u>

Lens Driver 4 serial protocol implementation

- Optotune's Lens driver is a serial device in Windows, Linux or using RS232
 - COM port in Windows
 - /dev/ttyACM0 in Linux
- Example commands are:
 - "Start" → "Ready" (works in ASCII)
 - SetCurrent
 - SetFocalPower
 - GetTemperature
- Implementation of a 16bit CRC is required
- Optotune provides sample code in C#, Labview, Python and Halcon

Command flow:

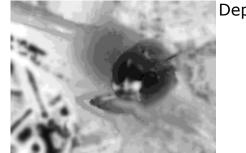
Serial protocol:

			Seed Community								Reals Commands	_							
**	Balange -	h	 1	 	:**	2				Ny dia Manad Manadaharan Ny Anatona	10.00 miles		***		E.,	kutur G			kogilegio est Millione
									1		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-					*****			
			1							5	1. Mar 1								••••
	1,		ta a the floor off.		1					the public sector to a sector	factories the acception of		ľ	ľ					
	****		1								1 - 100 - 10 - 11 - 10		ľ						
	1		to a the floor of						Ľ	and and a second second	To the free of the		r –	r –					
		-	1							No. of Concession, and	fa biy fan Laker Perk		1			Repárphis Physics cope Physics cope - Physics -		1	
	Longenerg of a Riceland State		114y/8							Parageneral I	14-14-24-14-14-14-14-14-14-14-14-14-14-14-14-14				•	Photosogo y Photos	General		
	1		 		-		Contraction of the local distance of the loc			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.					•	Plantageneral (Phys. 1).	5.n		
	(tan thy flam has a p		1		Lange L	L-11		Carlena de la	factors to by take and along t						ty		
		-	······		•		h (Pipelogo e pipelogo	habbaa.padi			Tarlahay Kalana jira k		1						
	Construction of the state of th	-			1		L (Frysleysigns (Fr L Lorini, L			Sector and the sector of the s						Phatasapa.	taquanddant I		***********
	(tanthy flambars p				Lapara L	h-h-h			In the threat should be			ľ .	•	Phates	1		
	····		114, Mar. 1				a segura de	terration of the second se			1-10-11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			ľ		Photogram	G		•••••••
			to the standard stand		1		Lager L				to be a first to be a produced		ľ	ľ					
	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1					-	A georgeory & de Au				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1								
 "	talkayaak	- +	tenterep.				Laips L				to being taken produ				•	Physhydebde	testeeden	1	

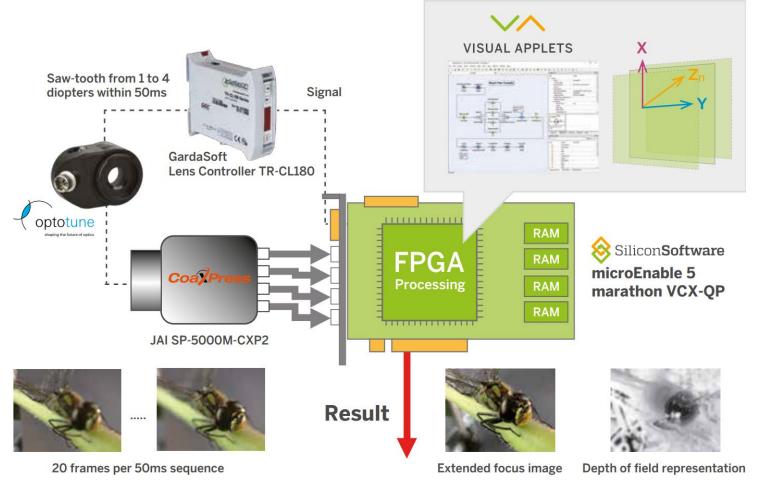
Software partners for Optotune's Lens Driver 4

Partner company	Software	Integration features
	Common Vision Blox	 Lens Driver integrated in custom release Slider for Focal Power Mode Auto focus function
EVT 🔶	EyeVision	 Lens Driver built in through plugin interface User friendly integration of current mode Auto focus function
MVTec Software GmbH	Halcon	 Lens Driver integrated via HDevelop procedure library Source code can be edited Image stacking & 3D reconstruction
	Matrox	 - C++ project compatible with MIL10 - Auto focus implementation incl. "continuous mode"
Sanxo	Modular X	 Lens control via DLL calls Several autofocus functions incl. "continuous mode" Image stacking & 3D reconstruction
Industrielle Bildverarbeitung	NeuroCheck 6.1	 Lens control via plugin-DLL - Optical power mode Parallel use of several lenses
NVISION	nVision	- Complete integration of all Driver features

Focus stacking enables "hyper-focus" images and "depth from focus"

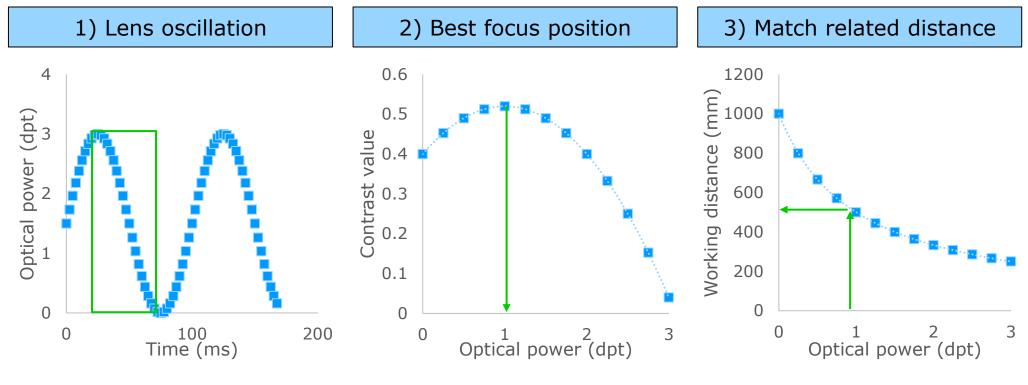

Z-stack of e.g. 10 to 30 images*

Rendered hyper-focus image**



Depth map Video

*Ideally the number of frames to acquire is = Z-range / DoF **Rendered with Helicon Focus 6.7.1 software from 15 pictures (offline)


Focus stacking in real-time using FPGA

- 20 images per stack in 50ms
- Scaled & combined in FPGA with zero latency
- 1MP extended depth image @20fps
- The bottle neck is now the camera & camera interface

How to design a distance sensor based on DFF

- Use a low-res camera with fast framerate (e.g. 400fps)
- Oscillate the EL at e.g. 10 Hz
- One sweep will contain 20 frames at different focus positions
- Calculate a contrast value for each frame (e.g. using a Sobel filter or FFT)
- Contrast vs. optical power will result in a near parabolic point cloud
- Calculate the maximum of the parabola to get the best focus position

- Get the corresponding working distance from a pre-calibrated lookup table
- Relation can be linear (telecentric lenses, microscope objectives) or 1/x (front lens configuration)

- Introduction
- How to combine ELs with off-the-shelf optics
 - Entocentric lenses
 - Telecentric lenses
 - Microscopy
- Custom designs
- Optics configuration tools
- Standard liquid lenses, drivers & software
- Application examples

Application example: **Package sorting – focus on different box sizes**

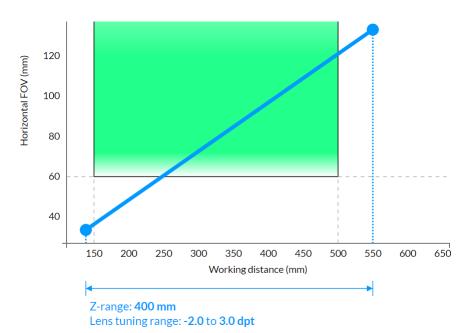
- Code reading and OCR on boxes of different heights
- Sensor size: 40mm (line scan)
- Tunable lens: EL-16-40-TC-VIS-5D-M42
- Imaging lens: 60mm M42-mount
- Angular FOV: 37°
- WD range: 800 1500mm

Close focus

Focal length f: Sensor height v: Working distance D: Pixel pitch 60 mmField of view:3740 mmObject height H:533800 mmMagnification:0.085 umResolution on object:67

Far focus

Focal length f:	<mark>60</mark> m	nm	Field of view:	37	0
Sensor height v:	<mark>40</mark> m	nm	Object height H:	1'000	mm
Working distance D:	<mark>1500</mark> m	nm	Magnification:	0.04	
Pixel pitch	<mark>5</mark> u	IM	Resolution on object:	125	um



optotune

Application example: Bottle inspection – refocus for different sizes

- Inspection of bottle bottom, variable sizes
- Sensor size: 2/3"
- Imaging lens: 35mm C-mount
- Tunable lens: EL-16-40-TC-VIS-5D-M27
- Angular HFOV: 14°
- WD range: 150 to 550mm

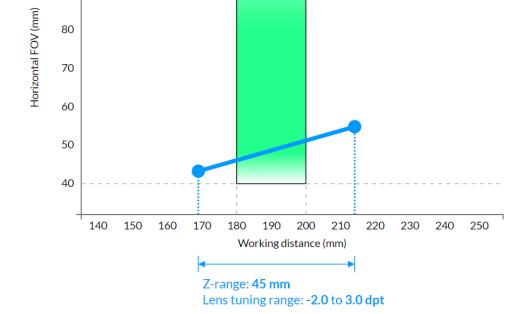
Application example: **Robot vision – refocus as you get closer to zoom in**

- Camera mounted on robot arm
- Benefit: Focused images can be taken at any distance resulting in variable magnification.
 E.g. reducing WD from 1m to 0.2m + refocusing results in a 5X zoom!
- Sensor size: 1/2"
- Imaging lens: 12mm S-mount
- Tunable lens: EL-10-30-Ci-VIS-LD-MV
- Angular HFOV: 30°
- WD range: 170 to 1000mm

optotune

Application example: Contact lens inspection – scan along the curves

- Inspection of contact lenses (defects, read imprinted codes)
- Sensor size: 2/3"
- Tunable lens: EL-16-40-TC-VIS-5D-C
- Imaging lens: 50mm C-mount
- Resulting 3D FOV: 28x21x45mm



Application example: Electronics inspection – fast autofocus

- Inspection of electronics, EL allows for continuous focusing
- Sensor size: 1"
- Tunable lens: EL-16-40-TC-VIS-5D-C
- Imaging lens: 50mm C-mount
- Resulting 3D FOV: 40x30x45mm



Application example: Jewel inspection – scan through to find defects

- Inspection of jewels (z-scan to find defects)
- Sensor size: 1"
- Distance rings: 20mm
- Tunable lens: EL-16-40-TC-VIS-5D-C
- Imaging lens: 50mm C-mount
- Resulting 3D FOV: 24x18x21mm

Application example: Camera lens inspection – step through the stack

- Inspection of dust & scratches in a stack of molded plastic lenses
- Sensor: 1.1" 12MP
- Imaging lens: 1.0X telecentric VS-THV1-110_S-LQL1
- Tunable lens: EL-16-40-TC-VIS-5D-C (integrated)
- Resulting 3D FOV: 14.2x10.4x14.3mm
- Test report available:

https://www.optotune.com/images/products/181010%20VS-THV1-110-LQL1%20+%20EL-16-40-TC-VIS-5D-C.pdf

optotune

optotune

69

Application example: IC inspection – image five sides with one camera

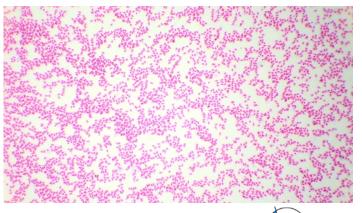
- Inspection of ICs, top and side views (via mirror) have different working distances
- Sensor: 1/2"
- Imaging lens: 0.15X telecentric lens
- Tunable lens: EL-10-30-Ci-VIS-LD (integrated)
- Resulting 3D FOV: 41.2x30.9x**50+**mm

optotune

Industrial microscopy – automated zoom & focus

• Lens control fully integrated into system software

Application example:


- Tunable lens: EL-16-40-TC-VIS-5D-C
- Video: <u>https://youtu.be/ZZFe3hg9JwM</u>

Application example: Blood analysis – portable microscope

- Cell counting & analysis
- Sensor: 2/3"
- Empty tube: 50mm
- Tunable lens: EL-10-30-Ci-VIS-LD-MV
- Imaging lens: inverted 16mm lens (e.g. Edmund Optics 85350)
- Magnification: 6X
- Resulting 3D FOV: 1.4x1.1x**0.8**mm

optotune

Thank you!

shaping the future of optics

Optotune Switzerland AG Bernstrasse 388 CH-8953 Dietikon Switzerland

Phone: +41 58 856 3000 | Fax: +41 58 856 3001 www.optotune.com | info@optotune.com

